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The escape of a gas through a plane slit into a vacuum is considered and the flow in the region where it can be represented by 
a self-similar solution of the corresponding gas-dynamic system is considered. The asymptotic forms in the neighbourhood of 
singular flow surfaces are investigated. In particular, the deviation of the free surface from its analogue in the Prandtl-Mayer 
type solution is determined. Copyright © 1996 Elsevier Science Ltd. 

The unsteady escape of a gas into a vacuum has been considered in a number of publications (for 
example, [1--4]). 

1. Consider the following situation. At the instant t = 0 a gas begins to escape into a vacuum through 
a plane slit --a < x < a, y ~< 0 filled with an ideal gas having an adiabatic index T. When t = 0 the gas 
is at rest and the velocity of sound c = Co. The flow that occurs when t I> 0 is symmetrical about the 
plane x = 0, and up to the instant t = t~ two regions can be distinguished in xyt space: (1) a region of 
unperturbed one-dimensional flow, corresponding to a plane Riemann wave, and (2) a region of 
perturbed two-dimensional flow. 

The asymptotic forms of the flow at times close to the instant when expansion begins, and, at finite 
times, in the neigh bourhood of the boundary between the Riemann wave and the boundary of the 
expansion, can be found by the method of matched asymptotic expansions [5-7]. In view of the symmetry 
of the flow we will consider only the region (x i> 0, y, t). 

For our further calculations it will be more convenient to use the following dimensionless variables 

x = ~ ,  y = a y ,  t = t j ,  v x = c ~ - x ,  v , . = c ~ . ,  c = c 0 ~  , t o =  a / c  O (1.1) 

(Vx and Vy are the corresponding components of the velocity). In the new variables, the slit is defined 
by the inequalities --1 ~< x ~< 1, and the velocity of sound in the gas up to the time when the gas begins 
to escape is Co y 1. The bar on the symbols will henceforth be omitted. The flow is self-similar in the 
regions considered up to a certain time t = t~. The boundary between regions 1 and 2 coincides with 
the characteristic emerging from the boundary of the slit x = 1, y = 0 at the instant t = 0. The instant 
t~ coincides with the instant when this characteristic meets the plane x = 0. 

The self-similar variables and functions will be as follows: 

g = x - I  rl==, vx=v+C{,q), v,=v,.C{,rl), c=c({,rl) (1.2) 
t t 

In self-similar variables the flow is governed by the equations 

Oo~ h - !  Of (v:, _q)Or,. +(v,-rl) + - -  - 0  

0v,. 0v ,  h - 1 0 f = 0  (1.3) 
an 2 an 

• h-i(  ) = y - l  
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In the self-similar ~, r I plane it will be convenient henceforth to use polar coordinates tp and r, where 
cp is the angle which the ray from the point ~ = 0, 11 = 0 makes with the semiaxis (rl = 0, ~ ~< 0), and 
r is the distance from the origin (~ = 0, 1] = 0) to the point 9, ~1 ( r2 = ~2 + r12), and the corresponding 
components of the velocity ~ = 3r/3t, ~ = -r39/3t. Here 

= -rcos~o, q = rsimp (1.4) 

v x = --V r COS (p - v  ~ sin ( p, v,. =v,.sin~-v~ocos( p 

In polar coordinates the gas-dynamic system can be rewritten as follows: 

2 h -  I 4 t  (o _r)  OV,. V~ bv,. v,p + . . . . . .  0 
Or r O~p r 2 Dr 

(o, ._r)aV~ o ,  av~ vpo~ h - I  3.f - - - ~ - -  =0  
~r r atp r 2r 3<p 

(v _ r ) b f  v~o a f +  2 l a y :  13v~_v_~l= 0 
Or r a~ h - l J L  a,- , a~p 

(1.5) 

2. The flow in the first region--the Riemann wave--is defined by the formulae 

h - I  / ( h  i q ) (2.1) v x - - o ,  v = - - f f - ( r l + l ) ,  c =  - - 
h 

The equation of the characteristic, which separates the Riemann wave and the perturbed two- 
dimensional flow, is found from system (1.3) and the values of the functions in the Riemann wave 

drl  _ 2 c ~  
" ~ - -  ~2 _c  2 (2.2) 

With the initial values ~ = 0, 11 = 0 the solution of Eq. (2.2), i.e. the equation of the characteristic, 
will be 

h -  i (h  - I - 11) (2.3) 

The Riemann wave will correspond to the flow in the first region up to the instant t~ when the 
separating characteristic meets the planex = 0. The lines of intersection in the ~, r I plane will correspond 
to the point where the function ~(rl), which defines this characteristic, is a minimum 

'~.,i .- h - l ( 2 ]  Ira'-z> 
I, t T S  ' 

)''<'-'' 
< h - I  (2.4) 

In the x = 0 plane we have ~ = -1/t. Consequently 

, l1 ( h ' ~ l m ' - 2 )  

'° :7-;zTtTJ (2.5) 

Hence, when t = t~ the first region only exists in the range 0 < rl < llmin and, consequently, the free 
boundary, the equation of which in the Riemann wave is rl = h - 1, does not occur in the first region. 

In polar coordinates the Riemann wave in the first region is defined by the formulae 

h - I  
o,. = --h--- (I + r sin tp) sin tp, 

h - I  
v~ = - - - ( I  + rsm (p)coscp (2.6) 

/s 
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while the equation which defines the separating characteristic has the form 

dr v~(o ,.- r ) -  ~/-frcostp 
- -  = r (2 .7)  

The equation of the characteristic itself is given by the implicit function 

(2.8) 

As tp ~ 0, the equations of the characteristic and the functions of it have the following asymptotic 
forms 

r =  
h - i  ~ ( h - 1 ) ( 7 h + 6 ) q ~ 3 .  

h 12h 2 
h - I  2 1 2 , 12-5h 4] 

[ _ , ,9 ,  h-Icp l+5h 6 p2+.~ h'- 30) 
h 6h 

The following values correspond to the point where the characteristic meets the plane of symmetry 
x = 0  

9 = 9o = arctg(_ q,,i,, ] [ [(h'~'"h:-" ]} 

2 ( 2 ]  '`u'-2, ( I V2"~2/u'-2'] ~ 
+ l - - T +  I / / - - |  / ,-=(h-I) i -  kh) kh- )kh; J 

(2.10) 

3. The method of determining the asymptotic form of gas-dynamic functions in the second region red- 
uces to representing the gas-dynamic functions in the form of the first few terms of the asymptotic series 
and substituting them into system (1.5), after which one can obtain in an obvious way the equations which 
govern the coefficients of the expansion. Here the asymptotic forms on the boundaries of neighbouring 
regions obtained from the values of the functions in each of them must be identical in definite orders. 

In the second region, the flow in the principal term is of the Prandtl-Mayer type, where all the gas- 
dynamic quantities are functions of the angle tp only. By (1.5) these functions are defined by the system 
of equations 

vv (v; - VV (vr-V~)-~r l 

? f '  +h2~_lf(v~-Vr)=O 
(3.1) 

and the initial data 
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tp = O, v r = O, v ¢ = h f = - -  (3.2) 

The solution of system (3.1) and (3.2) can be written in the explicit form 

V r = - ~ - S m ~ ,  V+=-- h cos , f = -  cos2vr~ 

Here 0 ~< 9 ~< ~/(h)~/2. The line q> = ~/(h)n/2 corresponds to  the free boundary when there are no 
perturbations. Obviously the proposed investigation only holds when ~/(h)rt/2 < <P0, where 90 is the angle 
corresponding to the half-plane which bounds the initial region of the vacuum. Since 90 < 3n/2, we 
will henceforth assume h < 9. 

When 9 --> 0 we obtain the asymptotic form 

h - I  h - 1  ) h - I  h - I  2 
v,.=~ ~ ~ + ~ ,  v+=- h +G r~ 

(3.4) 

The asymptotic form of the flow when q~ ---> 0 along the separating characteristic (2.9) is identical with 
the corresponding asymptotic form of the Prandtl-Mayer solution (3.4) only in the principal term. Hence, 
to match the solutions, starting from the asymptotic forms (2.9) and (3.4) we will seek the asymptotic 
form of the solution in the part adjoining the characteristic of region 2, as tp ---> 0 and r ---> 0, in the form 

V r "~ tl rO (~)l~O -l-V rl (~){p3 -l-V r2 (~)¢~5 

V+ =V+oCr~)+V+t(;)+ 2 +V+2(r,)~O + 

f = fo (4) + ft (~)q)2 + ]2 (~)(P4 (~ = r / q~) 

(3.5) 

The boundary conditions for the equations defining the functions with subscripts 0 and 1, will be the 
values of these functions when ~ = ~ = (h  - 1) /h ,  corresponding to the characteristic, and when ~ = 
~1 = 0, corresponding to the Prandtl-Mayer solution. We have 

~=~0: V,+o(;o)= h - i  h- I  (h~__~)2 
" h  ' v + ° ( ~ ; ° ) = -  I ' -~ -  fo = 

v r~ (CO) = (h - l)(5h - 6) (/2 - i)(h - 2) 
6h 2 ' v¢l(~o) = 2h 2 

( h - i )  2 
ft (;o) = -2 h--~ 

(3.6) 

h - I  
V r l ( ; l  ) m 6 h  2 , 

( h  - 1) 2 

f~ (~ , )=  h 3 

h - I  
, V+oCr, l ) = - - -  

h 
h - I 

h - 1 f0 = 
h ' 

(3.7) 
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The functions with a subscript of zero are defined by the system of equations 

V,.oU ;04 + ~ f~ ; -v  +o (v ,.o +v +o) = o 

V+oV+og+ fg+ = o, ~ - ~ f o V + o  +V+oJo• = o 
(3.8) 

Here and henceforth the prime denotes a derivative with respect to the corresponding variable. 
The solution of the system consists of constants which are identical with the boundary conditions for 

the functions with a subscript of zero. 
To obtain the eqmttions which define the functions with a subscript of one, we will use a method which 

will be employed repeatedly later. If we substitute the first two terms of representation (3.5) into system 
(1.5), we obtain only two linearly independent equations defining the functions with a subscript of one 

1 , i 1 
-vh ' '~  - ~ ' A ~  - ~ ' ( ~  ,, +v  +,) = 0 

+ 2(h - I) 
2u  ~,~ - fj~ + 2 fl - hU ,p, ~ = 0  

(3.9) 

Here the second equation can be replaced by the first integral, which, taking boundary conditions (3.6) 
and (3.7) into account, can be written in the form 

u + l  - ~ ' f l  = ( 3 . 1 0 )  

In order to obtain the lacking third equation, we will write two equations of the system which define 
the functions with a subscript of two 

, ,  h - I  ,. 
v + o u , 2 % + T f ~  = 40 ~00u tp 2 + 2 ( h -  !))' 2 -(v , .  o -.~)v ~01~ + 

-w +i ( 2 v  +,, - 2v  ~i~)  - u  ,.o v +,t -v,,,,ov ,~ 

h - I  _,_ 8 h - I  h - I  -2(!t_-l).il v + 2 % ' ' + T  ) '~q=- - ~  v+2+4 h '/2+ 

2 • • 

+ ~ _ ~  [ f0v ,.,~ + .~v +,~ + (v +, +v  ,.0 - ; ) . t i ;  + .f0v ,.~ - (v ,.0 - (h + ]~ +~ )J5 ] 

Subtracting the first equation, multiplied by 2/h, from the second, we obtain the lacking third equation. 
Hence, using the first integral (3.10), the determination of the functions with a subscript of one can 

be reduced to integrating a system consisting of two differential equations 

(2h_-3 2 ; + h _ ~ l v ~ , ~ , .  h - I  ,+ h - I  i h 2 
+ t q + T v , . , q = T (  - 2 v + , ) +  ~--Si'.v,+,, 

- v+]~+v,' ,~=v~l +3 u.,+] 
(3.11) 

Here, according to boundary conditions (3.6) and (3.7), it is required to obtain an integral curve 
connecting the pointsA and B, where 

A: 

B: 

h - I ( h  - I ) ( 5 h  - 6 )  ( h  - I ) ( h -  2 )  
; = - T - '  v , -  = 6h 2 v~l 2h 2 

h - I  h - I  
~=0, u,. l =  61+ 2 , u ~ l  = 2 h  2 
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The exact solution of system (3.11) can be written explicitly as follows: 

I/,,=- 
[ 

(a+X)q2ap5/2u') a 

3a' 
+G 9 “IpI 

I 
= -;(a+& +; 

h-l 

a=ht 

From the first integral (3.10) we obtain the function 

2 

f, =_!.(a+X)2 +% 
h h2 

(3.12) 

(3.13) 

which, as can be easily verified, satisfies the boundary conditions. Two conclusions, which are important 
for later investigations, follow from the formulae obtained. 

1. In the asymptotic form obtained in powers of x the coefficients of the zeroth and first powers of 
x are identical with the corresponding coefficients of the unperturbed flow. 

2. Since a + x = r/q, the solution obtained has the following form in powers of r 

G=(u,.,UcP,f)=G~((P)+r’G2((P)+... (3.14) 

The solution obtained can be extended in two directions: along the separating characteristics, and 
for finite values of cp, but for small values of r. 

4. To obtain the asymptotic form of the solution in the neighbourhood of the characteristic, the 
equation of which we will denote by r = r(q), we will represent the gas-dynamic functions in the form 
of asymptotic series 

C=c,(cp)+(~-l)C,(cp)+(l:-I)~G,(cp)+..., ,q=rlr(cp) (4.1) 

Functions corresponding both to the unperturbed and the perturbed flows must satisfy the system 
of equations, which will be obtained for dete rmining G,(q). The initial asymptotic forms for the perturbed 
flow as cp + 0 correspond to the functions determined in Section 3. 

In view of conclusion 1 reached at the end of Section 3, the functions Ga(cp) and Gi(cp) will be identical 
with the corresponding solutions for the unperturbed flow. Substituting series (4.1) into system (1.5) 
we obtain a system of equations for determining Gz(cp) in which only two equations are linearly inde- 
pendent. The lacking third equation is obtained by the method employed earlier. 

We will write the system of equations for the functions with a subscript of three. The determinant 
of the system is also equal to zero here, but the right-hand sides contain functions with a subscript of 
two and their derivatives. The linear combination of the equations obtained with coefficients 

reduces the combination of the left-hand sides of the equations to zero, and gives the lacking third 
equation for determining the functions with a subscript of two. The following system of equations is 
thereby obtained 
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vg0v;:2+ A v 9 o + - ~ B f o  ;2+ A+v9oB ]2"= 

= 2(u,.|-r)+e,.l+2(vgl-v~o)+A(v~j+voo) + k~-~.¢;+--£-~fo ~2+ 

) E l rt r' 
+ - -Url--+2v,.0r +A 2(Url --r)--V;o +31101r+UgO _ 

-B Cd-TsTf, 7 

+B 2 "|-r+v°~ r )  h - l k  "°-vg°+V"l+Vgl r f 2 -  

t r t  • 

--(001 --090) Vrl --Vq~oV,. 1 ~- -O~l  +Ugl(2Vtp 0 +UrO)+ 
r 

rA- )(UoI--Uoo)--UrOUoI]+ +A[ ' -~ ( f l l ' -  flr~'r)VOl-(V;l-VOl r v,. I 

+ --fOVrl +(Url --VrO +Vo0--U91 )][ + foCvoI--Vol) 
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(4.2) 

Here 

r p 

S=orO - r + - - V o 0  , 
r 

v,. 0 = ~-~(rsin(p + I)sin 9 

0 ° ° -  Th-i (rsintp+l)cos(p, f = ( h - l h  r s ing)  2 h  (4.3) 

h -  1 rsin 2 9, h -  I rsingcos~p 
v "l = ' h  v 9t  - h 

ft = - 2 (  h-lh rsh~°)rsintp 

Substituting the: expressions for ~)r2(9) and ~}92(9), taken from the first two equations, into the third, 
we obtain a linear differential equation for the function f2(9), which must be integrated in the limits 
0 < 9 < 9o = - arctg{h[1-(h/2)'lt"-~*]} < x/2, where the coefficient off~ is equal to - 2rcos9/[(X - 
1)~/f] for the initial asymptotic form 

9 --+ 0; f2 - -(h -I)2 h-392 (4.4) 

2 S vanish. However, it Singularities may arise in the solution only if some of the quantities f0 - ~)~0, 
can be shown thai: these quantities vanish only when 9 = 0. 

Hence, in the n¢ighbourhood of the characteristic in the second region the functions with subscripts 
zero, one and two are continuous and have continuous derivatives. This assertion also holds for the 
coefficients for the asymptotic series with higher numbers, since the occurrence of a singularity 
in the corresponding equations is due to the fact that the expressions f0 - ~)~0 and S vanish. Hence, 
we can assume characteristic (2.8) to be the boundary of the flow considered in the range 
0 < 9 < 9 0 .  
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5. The asymptotic form of the flow as r ---> 0 and finite q0, must be sought, starting from (3.14), in the 
form 

Or _-- Or0(q))-I- r2Ur2(qO), O~o ---- U~o()(qO)+ r2uko2(qO) (5.1) 

f = f0 (¢p) + r2f2 (q0) 

The functions with the subscript zero correspond to the Prandtl-Mayer solution 

v~°= -~ - - s ' n~  "' u~°" h cos ~---h---) cos2 r~- (5.2) 

Functions with subscript two are defined by the system 

U~oU~.  2 + (2uq, o + U~.o)U~2 - 2o , . 0u , -2  - ( h  - l ) . t  2 = 0 

u,ou 2 A' + (U;o - 3U,.o)%2 0 (5.3) 

2 2 ,  , , h 6 _ ~ _ l  ( 2 h  2 , ] h - 1 U'°u*:2 + u ' ° f ;  + f(~u'P2 - JoU"2 + L--ffS'-(U"O + -ff'~-'lu~O f2 = 0 

From the last two equations we can obtain the final relation for the functions Vr2, Vm' fz. Using this, 
we can reduce system (5.3) to two differential equations, defining the functions ~r2, v~,  and to the final 
expression for f2 in terms of these functions 

2 ] 3(h - 1) 
2h u~.._._~o _ 2Uro u,'2 U~ooU~2 = 0 Or*oUr2 +~,h+l U~o . /7+1 

3h , I1 u~O.u~. ~ 3h h + 2  + 
h + l U ~ ° U ~ 2 - h + l  u,. o - h + !  u'°ut°2- h+ l  

(h - 1) 2 ]U~oOUr2 = 0 
h(h + I)u,2.0 J 

(5.4) 

u~° [(4h - 2)u,.0u~2 - 2hu~00Ur2 ] f2 = (h 2 _ i)U,.o 

It follows from the Prandtl-Mayer solut!on that when q~ = ~[(h)n/2 the function f0 = 0, i.e. the free 
boundary corresponds to this value of q0 when r ---> 0. Hence, the integration must be carried out within 
the limits of  the variation of q~: 0 ~< {p ~ ~/(h)n/2. By (3.12) and (3.13) we have the following asymptotic 
form as q~ ~ 0 

I lq0, f2 - l+-~q0 (5.5) 
Ur2"~ q)+q02' u~2= 2 3 

The departure from the origin, according to the asymptotic form (5.5), defines the unique integral 
curve of system (5.4), the asymptotic form of which as q0 ---> ~/(h)rd2 is given by the formulae 

34-h C,O,+,, ilr2 = h + I ' °cp2 = Cloh 

0 I 4 h - 2  3~]-h C01+/,] 

, J 
(5.6) 

where 0 = x / 2 -  ¢pfih, while Ca is a constant which depends on h. Hence, as r ~ 0 in the neighbourhood 
of the free boundary the asymptotic form of the gas-dynamic functions can be represented in the form 
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6. The free botmdary is defined by the equations 

(5.7) 

(6-l) 

with initial data 0 = 0, r = 0. 
In the main terms we have U, = (h - 1)/d/r, 2)8 = -(h - 1)8/h as 0 + 0 and r + 0. Hence 

drldCI=-hr/O (6.2) 

i.e. according to the initial data when 8 + 0 and r + 0 the equation of the free boundary is Cl = 0. 
When 8 -+ 0 and for finite values of r, by (5.7), the asymptotic flow in the neighbourhood of the free 
boundary can be represented in the form 

U, =cos~u~~(T)+~~+~u~,(~)+~~+~~~~(~)+... 

up =~in8v~~(r)+e”~~,(r)+e~+~~~~(1.)+... (6.3) 

f =sin2ef,(T)+eh+1fi(r)+e'1+Zf2(r)+... 

It will be sufficient in what follows to determine the functions with subscripts zero and one. The 
equations defining the functions with subscript zero, are as follows: 

with initial data 

h - I r=o+u -- ro - J7; ’ uq30 = 

The constants corresponding to (6.5) will be an obvious solution of this problem. 
We will write the system of equations defining the functions with subscript one, taking the values of 

the functions with subscript zero into account, in the form 

I 
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with initial asymptotic form 

3~Fh c r2 4h - 2  
O~oI = CI r2, U r l  = f l l  - -  - -  El r2 

h + l  I , h (h+ l )  (6.7) 

The corresponding solution of this system can be written explicitly as follows: 

h.[ h 
Or] = M  h C2 + C~M3-1H'r -3 3 (h - l )2  + r  dr 

h - ~/rh(h + I) 

4 h - 2  r 
u~l =CM2,  fl - - - v ~ l ,  M= 

h(h+ l )  ( h -  l) l alrh- r (6.8) 

It agrees with the initial asymptotic form (5.7) if we put C = (h -.1) 2 C1]h and C 2 = 0. Hence, in the 
neighbourhood of the free boundary when 0 ---> 0 and r --> (h - 1)/~lh, we have 

Or =~-~COSO+2 !h.-l{3 C t r 2 I h ~ l _ r l - 3 O h + ' +  ... 
ntn+O ~. a/h ) 

h - I  [ ( h -  I) 2 r 2 ] 
u ,  -- - sin 0 + 0hCi 

h h I (h -  1) 7-~rh- r] 2 +"" 

f'~(~-~-)2sin20+O"+'Ct[(h-I)2(4h-2)-h~-~-~) [(h_ 1) / ~/h_,.]2 r2 ]+:.. 

(6.9) 

7. The point 0 = 0, r = (h - 1)Hh is obviously a singular point for the solution (6.9), and starting 
from the asymptotic formulae (6.9) the solution in the neighbourhood of this singular point when h < 
5 can be represented in the form 

U r = U r l ( ~ / ) ,  Utp =O13q)l(/I/), f = 0 2 F l l ( ~ l ] )  

101Ch-')/2 
V =  h _ l _ ~ t - ~ r  (7.1) 

The corresponding equations for the functions with subscript one then take the following form 

. . h - I  
u,:j =0; (2+u~l)u~l~ +--~--Fl" ~ = - 2  +u~0 t + Fj 

L / l - -  I 

-2( 2,, 2 ) 
( 2 + u ~ , ) F [ v + ~ _ I  Flu;,V = L(h_ I) 2 b]u~, +~-sTFI (7.2) 

while the initial asymptotic forms as ~t ---> 0 will be 

h - I  h - 1  (h-I) 2 
Url = " ~ - ' - '  U~Pl -- T 4" h C1~1/2 

(~_~ / 2 (4h- 2)(h- 1)2 
FI = - h2(h+ i) Ct~t2 (7.3) 

By dividing the second equation of system (7.2) by the third, we obtain an equation, the solution 
of which can be used to reduce the solution of system (7.2) and (7.3) to quadratures. Making the 
substitution 
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h - I  +W,  F I = + O  
Ucpl = - - T  
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this equat ion and the initial data for  it can be writ ten in the form 

dO [4(2h - l)W + 2(h - I)h( W 2 - O)][h20 + (h - i) 2 ] 

d W  = ]~h- l ) h [ - 2 ( h -  l ) + ( h  3 - 2h ~- + 3 h ) W  + h 2W2 ] W  + ( h -  l )h2(h  2 - 1 - h W ) O  

W = 0 ,  O = 0  

(7.4) 

Equat ion (7.4) has six singular points (W/, Oi) (i = 1 , . . . ,  6). For  each point  the nature of  the singularity 
is de te rmined  and, f rom (7.2), the corresponding value of  ¥i  and the asymptotic  forms W/(¥ ) ,  Oi(¥)  
a s v ~  Vi. 

The  singular point  W1 = 0, I~I) 1 = 0 coincides with the initial data. The  na ture  of  the singularity is a 
saddle, the separatrices of  which 

(la) O=2W, (lb) O-  4 h - 2  W 
h h(h + i) 

By (7.3) the integral curve of  Eq. (7.4) follows separatrice lb,  where  the corresponding value is ¥ = 
¥1 = 0 and the asymptotic forms V ~ ~1 is 

W I = C ~  2 , O = [h(h + 1)] -I (4h - 2)C~ 2 

The  singular point  W2 = - ( h  + 1)/h, O2 = - [ (h  - 1) / h] 2 is a saddle point,  whose separatrices are 

(2a) O = O  2, (2b) O - 0 2 = 2 ( h - 3 ) ( h - I ) - I ( w - w 2 )  

The  corresponding value of  ~ = ~2(~2 # 0), and the asymptotic forms of  W(~) and O(~)  as ~ 
~t2 will be in accordance with separatr ice 2b 

4 ( h +  1) in ~ O = O 9  + 8 ( h + l ) l n  
W = W  2+ h - 3  ~ 2 "  - ( h - l )  2 ~2 

The  curve ~ = ~2 and 0 ~ 0 is the free  boundary,  since the corresponding cond i t i ons f  (~z) = 0 are 
satisfied on it, and as 0 ~ 0 it coincides with the integral equat ion dr~dO = ~lh r(~r - r ) ~  -1, or  in principal 
terms d~/dO = (h - 1 ) V ( ~  + 2 ) ( 2 ~ 0 )  -1. 

In fact 

f (q l2 )  = 02El  (~1/2) = 02{[( h - 1) /h]  2 + O2} = 0 

V~l(~2) = - ( h -  l ) / h +  W 2 = - 2  

The singular point W3 = (h - 1)/h, O3 = - [ (h  - 1)/h] 2 is a node, the separate whisker of which is • - O3 = 
2(3 - h) (h  - 1)-1(1¥ - Ws), while the curves of the common direction are governed by the asymptotic form 

W - W 3 = C(O -'--3,'n ~h-l)/2 + h - I  
2 ( 3 -  h) (O - O 3 )  (7.5) 

W h e n  h < 3 thJis point  corresponds to I ~t I = ~ with as~Tnptotic form W ~ I413 + C / ~ .  
The  singular point  W4 = - (h - 1) ' /h ,  O4 = - [ (h  - 1)/h] ~ is a node,  the separate  whisker of  which is 

• - -  O 4 = [ ( h  - 3 ) /2 ] (W-  W4), while the asymptotic form of  the curves of  the common  direction is 

W - W 4 --- C(O - • 4 )~ + [2 / (h - 3)1(O - I1) 4 ) 

When  h < 3 the value ~ = 0 corresponds  to this point, and [ ~ I = ~ when  h > 3. Here  W -  W4 = 
C I W 12/(3-h). 

The  singular point W5 = - 2(h - 1)/[h(h - 2)], • 5 = - 4 ( h  2 -  3h + 1)/[h(h - 2)] 2 is a node,  the individual 
whisker of  which • - O5 ~-- 2(h - 3)(h - 1)(h - 2)2] -1 ( W -  Ws), while the integral curves of  the common  
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direction touch the straight line 

- • 5 -- 2(h - 3)[(h - l)(h - 2)]-~( W - W 5 ) 

When the integral curves approach along a common direction, the value W = ~5 * 0 corresponds 
to this point with asymptotic form 

W _ W s _  2 in ~1 t 
h - 2  ~5 

The line ¥ = ¥5 when 2 < h < 3 in the principal order when 0 ~ 0 and  r ~ (h - 1)/h coincides with 
the characteristics, which here is defined by the equation 

(h-1)v ½1 0 (7.6) 

2 M=U~l[(h-l)lafh-r], N= FI-o~I 

Since for finite values of  ¥ the difference (h - 1 ) N h  - r - -  0 (h-l)/2, when h < 3 Eq. (7.6) asymptotically 
acquires the form 

dO = 2 ~ - f  +u~l 

By virtue of  the asymptotic forms derived earlier, this equation can be rewritten in the form d¥/dO 
~- h ( ¥  - ¥5)/[(h - 2)0, i.e. ¥ = W5 + AOh/(h-2), whereA is a constant which depends on h. 

The singular point I W6 1 = oo, ( I )  6 = oo is a node. The asymptotic form of the curves of  the common 
direction has the form tI) ~ C V f  2, and the corresponding value ¥ = ~6 = - 0 for the asymptotic 
form W ~ A I  ¥ 12/(h-1), • ~ CA21 ~ 14/(h-1). Here  ~ - (h-1)/~/h - r , f  ~- [ (h -1 ) /~h  - r] 2 and the line ¥ = 

\ \  

o\o/o i° 

2 < h < 3  e I 

o 

Iv' 

e e 

e 

h>J ~ I e7 

o_/o i. " 

Fig. 1. 
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0 corresponds to the characteristic. This follows f rom the asymptot ic  form of  the equat ion o f  the 
characteristics in this case: d ¥ / d O  ~ (h - 1)¥/(20),  i.e. ¥ ~- BI 0 J (h-l)/2, where B is a constant  which 
depends on  h. 

F rom the scheme of  isoclines (see Fig. 1) and the values o f  the variable V derived a b o v e  at the 
corresponding shlgnlar points one  can determine the fo rm o f  the integral curve (the plus and minus 
signs in the figure cor respond  to the sign o f  the derivative d a p / d W  in the region bounded  by the zero 
and infinity isoclhles; the horizontal dashed lines correspond t o A  = - [ (h  - 1)/h] 2 and the vertical dashed 
lines correspond llo the .value W = (h 2 -  1)/h). Here  one  must  take into account  the fact that  the integral 
curve, in the final analysis, must  intersect the point  corresponding to the free boundary,  i.e. the singular 
point  W2, tb2. 

When h < 3 the required integral curve, emerging from the first singular point, corresponding to ¥ = +0, passes 
through the point 1V3, 03, corresponding to the value V = __.o o, touches the line • = -[(h - 1)/hi 2, and after that 
it proceeds to the infinitely distant point W6 = --- 0o, 0 6 = oo. Its subsequent motion depends on whether h < 2 or 
h > 2 .  

Scheme 1:1 < h < 2. At an infinitely distant point, by varying the direction, which is possible since the value of 
= -0  corresponding to it in the principal term coincides with the equation of the characteristic, it passes through 

the saddle point Wz, O2 along its separatrice. 

Scheme 2:2 < h < 3. Taking into account the fact that the integral curve, as W = - o0, • = oo, passes to the left 
of the zero and intinity isoclines of Eq. (7.4), we conclude that when it is extended to W > --~ it intersects the 
nodal point Ws, Os in the common direction, after which, changing direction, it arrives at the saddle point 1412, 02. 
A change of direction is possible since the point W5, Os corresponds to the line W = ¥3, the equation of which 
agrees in its principal terms with the equation of the characteristic. 

Hence, when h < 3 the motion of the integral curve is completed on the line ¥ = ¥2. 

Scheme 3: h > 3. In this case, in the neighbourhood of the singular point W3, 03 solution (7.5) in the principal 
terms can be represented in the form 

h - ] 
= • (7.7) w 2(3-h)  

i.e. the extension of the integral curve of Eq. (7.4) when W > W3 would lead to negative values of F(~), and 
consequently, off010 , which is contradictory. Hence, when h > 3 the integral curve of Eq. (7.6) emerges along the 
separatrice lb in the direction • > 0, corresponding to the initial values of the singular point 1411, O, i.e. towards 
negative values of the variable ~. Then the separatrice, according to the scheme of the isoclines 3, intersects the 
zero isoeline, and then the infinity isocline, and as a result intersects the node corresponding to the singular point 
W4, 04, along the common direction. At this point a),l = -(h - 1) and F1 = 0, where dCp/dW = 0, and the 
corresponding value is ~ = --~, a)~l = I ~ 12/(3-~), F1 -~ I ~ 14/(3-h). Consequently, the derivatives of all orders in ~ of 
the functions U~l and F1 at this point vanish, by virtue of which further motion of the integral curve is permissible 
along the line F1 = [(h - 1)/h] 2 + • = 0, which is the integral of Eq. (7.4), up to the singular point 1412, 02. Hence, 
the equation of the free boundary for all values of 1 < h < 5 (3/2 < ~t < oo) in the neighbourhood of the point (0 
= O, r = (h - 1)hlh can be represented in the form 

h - I  (_0)(h-I)/2 (7.8) 
r =  N ~  ~l/2 

i.e. it deflates from the line 0 = 0. 
Note that the line ~ = --~ also satisfies the conditions of the free boundary. However, the possibility of a further 

advance of the integral curve to the singular point 1412, 02 and the continuity of the expected results with respect 
to the parameter h, enable us to assume that the free boundary is defined by Eq. (7.8) when h > 3. 

This investigation was suggested by A. N. Kraiko. We also discussed our  preliminary results with him, 
which led to some corrections.  The  manuscript  was p repared  by M. S. Gavreyeva and E. A. Zabrodina.  
T h e  graphs were drawn by A. V. Severin. I express my grateful  thanks to all o f  them. 
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